
Cloudy with a Chance of Bugs:
Attacking the Windows Cloud

Files API
Alex Birnberg

2

About

Alex Birnberg

● Vulnerability Researcher

● 2nd Year Computer Security MSc.

student at Vrije Universiteit Amsterdam

(@vu5sec)

● Focus on systems architecture and OS

internals

● Hobbies for cars and traveling

3

Agenda

1. Introduction

2. Architecture

3. Attack Surface

4. Case Studies

5. Exploitation

6. Demo

7. Conclusion

4

Introduction

Cloud Files API

“provides functionality at the boundary between the user mode and the file system.

This API handles the creation and management of placeholder files and directories”

- MSDN

5

Timeline

6

7

Why target the cldflt driver?

● Reachable from medium integrity

● Impacts default Windows installations

● Not extensively covered publicly

● Complex interaction between components

Architecture

9

Port Cookie

- Passed by kernel to callbacks

- Root data structure

Manages:

1. Process information
- PEPROCESS, Process Id, etc

1. Sync roots

2. Number of connections

10

Sync Root

- Directory controlled by sync engine

- Serves requests for files within control

- Also tracked by CldFlt instance

- Manages streams

11

Streams

- Track actual file content

- Created every time when the

state of a placeholder changes

Hydration - the contents of a file are brought
from remote to local

Dehydration - the contents of a file are liberated

locally from disk

12

Placeholders

- Regular files or directories

- Content stored remotely

- Reparse points to store metadata

States

13

Reparse Points

- Extends NTFS with custom metadata

- Passed to target filter driver based on tag

- 16 tags handled by cldflt

- Optionally the metadata is compressed

Format

IO_REPARSE_TAG_CLOUD

IO_REPARSE_TAG_CLOUD_1

IO_REPARSE_TAG_CLOUD_2

…

Tags

Attack Surface

15

Overview

16

About Mini-Filter Drivers

- Perfect for cloud storage

- 15 I/O operations filtered

- Hard to fuzz effectively

Filtered I/O Operations

17

Start hydration on stream

Cache callback data

Setup stream context

Notify sync engine

Close stream / placeholder

Blocks user from regular tasks Perform cldflt specific tasks

Manage placeholders
Query sync root On-demand hydration / dehydration

Return stream context info

Set stream parameters

Populate target directory

18

Filter Connection Port: \CLDMSGPORT

DACL: D:P(A;;GA;;;AU)

Filter Port

● CldiPortNotifyConnect

● CldiPortNotifyMessage

● CldiPortNotifyDisconnect

GenericAll

Authenticated Users Setup sync root table
Initialize client cookie

Capture process info

Business logic

Messages

19

Placeholder Flow

20

- Needed to set up the file stream context

- Hydration / dehydration triggers reinitialization

- Reparse point buffer can be fully controlled

Getting Samples (I)

- windbg + pykd to the rescue!

- We can hook cldflt!HsmpRpReadBuffer

- Dump everything to files

21

Getting Samples (II)

22

Placeholder File Format (I)

23

- CLOUD_DATA_HEADER

- CLOUD_DATA_ITEMS

- CLOUD_DATA_BODY

Placeholder File Format (II)

24

- Flexible data storage mechanism

- First 10 items are reserved

- Widely used across the driver

Placeholder Items

25

Id Name Type

0 Version BYTE

1 Stream Flags DWORD

2 Stream Size QWORD

3 Placeholder Info BUFFER

4 Bitmap 0 BUFFER

5 Bitmap 1 BUFFER

6 Bitmap 2 BUFFER

7 Hydration Time QWORD

8 Dehydration Time QWORD

9 Dehydration Reason DWORD

- Stores stream state information

- Includes placeholder data specific

to the sync engine

- Contains bitmaps?

Bitmap Item

- Items nested within Bitmap 0 / 1 / 2

- Data consistency via mirrored copies

- Block state tracks when bitmap is out-of-sync

26

Id Name Type

0 Version BYTE

1 Block Size BYTE

2 Flags BYTE

3 LBN QWORD

4 Block State BUFFER

Case Studies

Case Study: CVE-2024-26160 - Analysis

28Source: patch diff

How to create a sync root

29

Can be either created via the cldapi functions CfRegisterSyncRoot and CfConnectSyncRoot or
manually via fltlib and FilterSendMessage.

1. Policies

2. Connecting

Case Study: CVE-2024-26160 - PoC

30

Case Study: CVE-2024-26160 - Flow

31

Case Study: CVE-2024-26160 - Result

32

● Leak arbitrary amount of stack

● Both pool and kernel addresses

● Would’ve been useful on 24H2

Case Study: CVE-2024-21310 - Analysis (I)

33Source: misfortune

Case Study: CVE-2024-21310 - Analysis (II)

34

Case Study: CVE-2024-21310 - PoC

35

Case Study: CVE-2024-21310 - Flow

36

Case Study: CVE-2024-21310 - Result

37

● Target in paged pool, size = 0x30

● Target allocation semi-controllable

● Content semi-controllable

● Length fixed (> 0xffd0)

Case Study: CVE-2023-36036 - Analysis (I)

38Source: public

Case Study: CVE-2023-36036 - Analysis (II)

39

Case Study: CVE-2023-36036 - PoC

40

Case Study: CVE-2023-36036 - Flow (I)

41

Id Name Type

0 Version = 1 BYTE

1 Stream Flags = 0x30 BYTE

3 Placeholder Info = “” BUFFER

10 “A” * 0x3f90 BUFFER

1. Craft reparse point

No checks here

2. Set reparse point

Case Study: CVE-2023-36036 - Flow (II)

42

3. Trigger reparse point

Case Study: CVE-2023-36036 - Result

43

● Target in paged pool, size = 0x4000

● Content and length fully controllable

Case Study: CVE-2024-30085 - Analysis (I)

44

Case Study: CVE-2024-30085 - Analysis (II)

45

Case Study: CVE-2024-30085 - Analysis (III)

46

Case Study: CVE-2024-30085 - PoC

47

Case Study: CVE-2024-30085 - PoC

48

Case Study: CVE-2024-30085 - Flow (I)

49

1. Create and connect sync root
2. Move sync root

3. Craft reparse point
3. Set reparse point

Id Name Type

0 Version = 0 BYTE

1 Block Size = 1 BYTE

2 Flags = 0 BYTE

3 LBN = 0 QWORD

4 Block State = “A” *
0x1008

BUFFER

Bitmap Item

Id Name Type

0 Version = 1 BYTE

1 Stream Flags = 0 DWORD

2 Stream Size = 0 QWORD

4 Bitmap Item BUFFER

Parent Item

Case Study: CVE-2024-30085 - Flow (II)

50

5. Move back sync root

6. Trigger context setup

Case Study: CVE-2024-30085 - Result

51

● Target in paged pool, size = 0x1000

● Content and length fully controllable

Exploitation

Target Specification
Windows 11 23H2 - 22631.3593

- KASLR

NtQuerySystemInformation to get token address

- SMAP

Not enabled in this context

- SMEP / kCFG

The attack is data-only

Exploitation (I)

1. Call NtAlpcCreateResourceReserve to create handles

2. Create bitmap block state buffer and overflow into the Handles table

Exploitation (II)

3. Craft reserve message with ExtensionBuffer and use NtAlpcSendWaitReceivePortfor
arbitrary read and write

4. Replace the token of the current process with the system token

Demo

Conclusion

● Hypothesis testing is time intensive

● The interaction between components may lead to complex edge cases

● External factors lead to interesting conditions too

● Still many components of cldflt unexplored

References

58

1. Forshaw, J. (2021) Hunting for bugs in windows mini-filter drivers, Hunting for Bugs in Windows Mini-Filter Drivers

2. Imbert, T. (2023) Windows kernel security: A deep dive into two exploits demonstrated at pwn2own, HITBSecConf2023 - Phuket

3. Asrir, N. (2024) Nassim-ASRIR/CVE-2023-36424: Windows kernel pool (CLFS.SYS) corruption privilege escalation, GitHub

4. Qi, C.L. (2023) Exploitation of a kernel pool overflow from a restrictive chunk size (CVE-2021-31969), STAR Labs

5. Lotfi, H. (2021) CVE-2021-31969: Underflowing in the clouds, Zero Day Initiative

6. Cloud filter API - win32 apps (2023) Win32 apps | Microsoft Learn

7. ShiJie, X., Jianyang, S. and Linshuang, L. (2022) Attacking the common log file system

8. Lu, K. and Stone-Gross, B. (2024) Technical analysis of windows CLFS Zero-day vulnerability CVE-2022-37969 - part 2: Exploit

analysis

